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Abstract
The existence of similarity reductions having x − 2V z − κz2 as similarity
variable is demonstrated for a number of evolution systems arising in
optoelectronics. The parameter κ ( �= 0) corresponds to acceleration if z

represents time, but corresponds to curvature if z is the propagation distance.
This is of current relevance to photorefractivity, which is known both
theoretically and experimentally to predict self-guiding optical beams. The
link between space-charge diffusion (which breaks the x ↔ −x symmetry) and
beam curvature is shown. A perturbation analysis for small diffusivity is used
to predict how κ and the beam profile depend on beam power and on diffusivity.
The results agree well with computations for the ordinary differential equations,
which are continued to larger diffusivities over a wide range of beam powers.

PACS numbers: 40.70.Nq, 42.65.−k, 42.65.Tg

1. Introduction and motivating example

Nonlinear optoelectronics has motivated the study of numerous equations and systems which
generalize the cubic nonlinear Schrödinger equation and which possess similarity reductions
based on travelling wave coordinates, the diffusive similarity variable xt−1/2 and combinations
thereof. However, little attention has previously been given to the fact that many of these
systems also possess reductions having as similarity variable the quantity x − κ t2, which is
constant along paths dx/dt = 2κt moving with constant acceleration. If the corresponding
solutions are pulse-like, they are known as ‘accelerating solitons’ (although, strictly, they
should be called accelerating solitary waves).

One of us first became aware of the accelerating similarity variable through a complete
Lie group analysis (Parker 1988) of the coupled NLS equations

iuz + uxx + (|u|2 + σ |v|2)u = 0
(1.1)

ivz + vxx + (σ |u|2 + |v|2)v = 0
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arising from the (symmetric) ‘cross-phase modulation’ of two modes in an optical waveguide.
Here z is the propagation distance, x is a (scaled) distance through the pulse measured relative
to an origin moving at the group velocity (common to each mode), while u and v are the
complex amplitudes of each mode at the chosen carrier frequency and subscripts denote partial
derivatives. The cubically nonlinear terms are not ‘phase sensitive’ and may be interpreted
as depending on the intensities |u|2 and |v|2 in the two modes. The parameter σ is the ratio
between ‘cross-phase modulation’ and ‘self-phase modulation’ coefficients; in fibres, it is
positive and typically is close to 2.

Similarity analysis for the system (1.1) showed the existence of the following similarity
variables:

(i) x − 2V z, (ii) z, (iii) xz−1/2, (iv) (x − 2V z)z−1/2, (v) x − κz2.

Similarity variable (i) corresponds to travelling wave solutions, the variable (ii) arises for
solutions with intensity depending only on z, (iii) is familiar for the heat equation, (iv) is a
combination of (i) and (iii), while variable (v) is the accelerating similarity variable of present
interest. (An investigation (Manganaro and Parker 1993) of systems generalizing (1.1) and
having variable coefficients used the Clarkson and Kruskal (1989) procedure, but found no
additional similarity variables.)

For the system (1.1), the ordinary differential equations (ODEs) determining the structure
of similarity solutions are autonomous in cases (i) and (ii) (i.e. the similarity variable does not
appear explicitly in the coefficients), but are non-autonomous otherwise. In case (ii), they are
readily solved. However, it is cases (i) and (v) which are relevant in this paper.

For case (i), the similarity reduction may be written as

u = eiθ(z,η)F (η) v = eiφ(z,η)G(η) η ≡ x − 2V z

with F, G, θ and φ real. When these are inserted into (1.1), it is found that

F ′′(η) +
{
2V θη − (θη)

2 − θz
}
F + (F 2 + σG2)F = 0

(1.2)
G′′(η) +

{
2Vφη − (φη)

2 − φz

}
G + (σF 2 + G2)G = 0

with two further equations which are equivalent to

∂
{
(θη − V )F 2(η)

}/
∂η = 0 ∂

{
(φη − V )G2(η)

}/
∂η = 0. (1.3)

These may be integrated twice to give

θ = V η + B1(z) +
∫

C1(z)F
−2(η) dη

(1.4)
φ = V η + B2(z) +

∫
C2(z)G

−2(η) dη.

Substitution into equations (1.2) is then consistent only if C1 and C2 are constants while
Bi(z) = �iz (i = 1, 2), hence yielding the structure ODEs

F ′′(η) +
{
V 2 − �1 − C2

1F
−4(η) + F 2 + σG2

}
F = 0

(1.5)
G′′(η) +

{
V 2 − �2 − C2

2G
−4(η) + σF 2 + G2}G = 0.

Observe that equations (1.5) may have pulse-like solutions (i.e. F → 0,G → 0 as
η → ±∞) only if C1 = C2 = 0 (which is analogous to the vanishing of ‘angular momentum’
in many mechanical systems, see the appendix). The numerical evidence is that families
possessing any specified number n of maxima for |F | exist. Also, certain solutions of (1.5)
are known explicitly (Porubov and Parker 1999) in terms of hyperbolic and Jacobian elliptic
functions.



Photorefractive accelerating pulses 1285

For case (v), with similarity variable η = x − κz2, the representations u =
eiθF (η) and v = eiφG(η) are unchanged, while (1.2) and (1.3) are altered only by the
replacement V → κz. Expressions (1.4) are replaced by

θ = κz

(
η +

1

3
κz2

)
+ �1z +

∫
C1F

−2 dη

(1.6)

φ = κz

(
η +

1

3
κz2

)
+ �2z +

∫
C2G

−2 dη

while the structure ODEs (1.5) are replaced by

F ′′(η) +
{−κη − �1 − C2

1F
−4(η) + F 2 + σG2

}
F = 0

(1.7)
G′′(η) +

{−κη − �2 − C2
2G

−4(η) + σF 2 + G2}G = 0.

Equations (1.7) are merely a variant of (1.5), in which the non-autonomous terms −κη

arise due to the ‘drift’ in the ‘frequencies’ θη and φη which is proportional to z and is induced by
the ‘acceleration’ κ . The close similarity of the systems (1.5) and (1.7) suggests that travelling
waves and accelerating similarity reductions may usefully be analysed simultaneously, using
the composite similarity variable

η = x − 2V z − κz2. (1.8)

In fact, for the system (1.1) (and indeed many others), pulse-like solutions can have
similarity variable (1.8) only for κ = 0, so that there is no acceleration. However, some
systems which are not invariant under the mapping x ↔ −x are found to have accelerating
pulse-like solutions. Examples are pulses in active media (Vanin et al 1994) and optical
soliton transmission subject to sliding-frequency filters in the limit of small amplifier spacing
(Kodama and Wabnitz 1994). These are discussed briefly in section 2, illustrating procedures
to be developed in section 3 for photorefractive self-guiding beams, such as those investigated
for coupled modes by Singh et al (1995). In section 4, the structure of localized (soliton)
solutions is analysed for the single-mode case, showing that acceleration (strictly a ‘bending’
effect for a spatial beam) is absent unless diffusion of space charge is included (so breaking the
x ↔ −x symmetry). A relation between path curvature and the diffusion parameter is derived,
involving integrated properties of the beam, such as power. To aid in numerical determination
of beam profiles, an asymptotic description is developed in section 5. The resulting beam
profiles are shown in section 6 for various values of the diffusion parameter, over a range of
beam powers. It is shown, over a considerable range of powers, that the path curvature is well
predicted by the asymptotic description, in which the beam profile is symmetric as determined
in the diffusionless case. At all values of diffusion, there is a beam power at which the path
bending is maximum; moreover, this power is largely insensitive to the diffusion parameter.

2. The ‘accelerating’ similarity reduction

The form of equations (1.4)–(1.7) suggests that many systems, including those of the form

i∂zun + Dn∂
2
xun + Fn

(|u1|2, . . . , |uN |2)un = 0 n = 1, 2, . . . , N (2.1)

with coefficients Dn and functions Fn which are real, possess similarity reductions both based
on the accelerating similarity variable x−κz2 and the familiar travelling wave variable x−2Vz.
Accordingly, we demonstrate that equations (2.1) are compatible with the composite similarity
ansatz

un = eiθn(z,η)Un(η) η = x − 2V z − κz2 (2.2)
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with Un and θn real (for n = 1, 2, . . . , N). (Actually, Lie group analysis, following Bluman
and Cole (1974) by seeking continuous groups of transformations which leave (2.1) invariant,
shows that, except when Fn is homogeneous of degree 1 in its N arguments, as in coupled
cubic NLS systems, expressions (2.2) describe all self-similar solutions other than certain
non-propagating solutions of the form

un = ei(x+kn)2/4Dnzvn(z) for which vn = z−1/2Cneirn(z)

with Cn and rn(z) real.)
Experience with many evolution equations indicates that self-similar solutions frequently

describe the eventual asymptotic form of solutions corresponding to broad classes of initial
conditions. Hence, solutions (2.2) with Un → 0 as η → ±∞ are expected to describe
propagation of localized pulses.

Since ηz = −2(V + κz) and ηx = 1, we find that equations (2.1) and (2.2) give rise to

DnU
′′
n +

{
2(V + κz)∂ηθn − Dn(∂ηθn)

2 − ∂zθn
}
Un + Fn

(
U 2

1 , U
2
2 , . . . , U

2
N

)
Un

+ i
{
2(Dn∂ηθn − V − κz)U ′

n + Dn

(
∂2
ηθn

)
Un

} = 0. (2.3)

Multiplying the imaginary part by Un and integrating readily yields the results

∂ηθn = V + κz

Dn

+
Cn(z)

U 2
n (η)

n = 1, 2, . . . , N

which may be integrated again to give

θn(z, η) = D−1
n (V + κz)η + �n(z) +

∫
Cn(z)U

−2
n dη. (2.4)

Since, in the real part of (2.3), the coefficient of Un cannot depend on z, substitution from (2.4)
shows that, for each n, both Cn and θ ′

n(z) − (V + κz)2/Dn are constants. Consequently,
generalizations of both (1.3) and (1.5) are obtained as

argun ≡ θn(z, η) = D−1
n

{
(V + κz)η + 1

3κ
2z3 + V κz2} + �nz +

∫
CnU

−2
n dη. (2.5)

The corresponding structure ODEs form the non-autonomous system

DnU
′′
n (η) − {

�n + D−1
n (κη − V 2) + DnC

2
nU

−4
n (η) − Fn

(
U 2

1 , . . . , U
2
N

)}
Un = 0. (2.6)

Besides the systems (1.1) and (2.1), others possess the accelerating similarity reduction.
Until 1994, accelerating solutions seemed to be merely a mathematical curiosity,but then Vanin
et al (1994) treated ultra-short laser-generated pulses travelling through an active medium by
studying the single equation

−iAz + Axx + |A|2A + iA

{
1 −

∫ x

−∞
|A|2 dx ′

}
= 0 (2.7)

while Kodama and Wabnitz (1994) used averaged Lagrangian techniques to analyse pulses
governed by the ‘sliding-frequency’ equation

uz − i 1
2uxx − i|u|2u = δu + β(∂x − iα0z)

2u. (2.8)

This governs optical solitons in sub-oceanic transmission lines having amplifiers tuned
to incrementally shifted central frequencies, so as to overcome timing ‘jitter’ otherwise
introduced by repeated amplification of noise (Mollenauer et al 1992).

In (2.7) the integral term is an approximation (based on a limit of the Maxwell–Bloch
equations) for the electric polarization pumped into the carrier frequency signal from a
background medium containing two-level atoms. Since equation (2.7) yields the statement

−i(A∗Az + AA∗
z) + (A∗Ax − AA∗

x)x + 2iAA∗
{

1 −
∫ x

−∞
AA∗ dx ′

}
= 0
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where ∗ denotes a complex conjugate, Vanin et al (1994) readily deduced that for any pulse
having |A| → 0 as x → ±∞ the ‘pulse energy’ W ≡ ∫ ∞

−∞ AA∗ dx satisfies the evolution
equation

dW

dz
= 2W − W 2.

Consequently, a pulse will evolve towards a pulse with energy W = 2.
When any solution A(x, z) to (2.7) is split into its modulus and argument as A = F eiθ ,

with F and θ real, the resulting equations are

Fxx +
{
θz − (θx)

2}F + F 3 = 0 (2.9)

−Fz + 2θxFx + θxxF + (1 − C)F = 0 (2.10)

Cx = F 2 C(−∞, z) = 0 C(∞, z) = W(z) (2.11)

which clearly admit travelling wave solutions with F, θ x, θ z and C depending only on x−2V z.
Vanin et al (1994) used physical reasoning to argue that these solutions are unstable but that
‘dissipative solitons’ of the form

A = eiθ(z,η)F (η) C = C(η) η = x − κz2 (2.12)

exist. Indeed, solutions with η = x − 2V z − κz2 as in (2.2) exist.
Substituting A = eiθ(z,η)F (η), C = C(η) into (2.7), taking the imaginary part and then

integrating and using the conditions F → 0 as η → ±∞ gives

2F 2(θη + V + κz) = C2 − 2C.

This then yields the expression for the phase in the form (cf equation (2.5))

θ = −(V + κz)η + z
(
� − V 2 − κV − 1

3κ
2z2) + �(η) (2.13)

together with the system of ODEs

F ′′(η) + {� − κη − (�′)2}F + F 3 = 0
(2.14)

F 2�′(η) = 1
2C

2 − C C ′(η) =F 2

and the asymptotic conditions

C(−∞) = 0 C(∞) = 2 F → 0 as η → ±∞.

It should be noted that V does not arise in the system (2.14) and that, for κ �= 0, the parameter
� corresponds only to a shift in the origin for η. Thus, solutions describing accelerating pulses
are those given by Vanin et al (1994), with κ playing the role of an eigenvalue related to the
peak amplitude and to the asymmetry of the ‘dissipative soliton’.

For equation (2.8), pulses of the form u = eiθ(z,η)F (η), with η = x − 1
2α0z

2 + bz, are
determined by Parker and Radha (2002), using a combination of asymptotic and numerical
methods.

3. Photorefractive self-guiding beams

Equations of the form (2.1) arise in many treatments of ‘spatial solitary waves’, which are self-
guiding beams of light. In particular, they describe beams propagating through photorefractive
crystals in which the optical intensity causes an accumulation of a space charge and an
associated transverse electric field. In Singh et al (1995), the equations for the envelopes
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u(x, z) and v(x, z) of two orthogonal components of electric field at a common carrier
frequency are given as

iαuz + uxx − β1u{1 + |u|2 + |v|2}−1 = 0
(3.1)

ivz + vxx − β2v{1 + |u|2 + |v|2}−1 = 0

where z is the propagation distance and x is a scaled distance transverse to the beam. While
for small intensities this system (with α = 1) has (3.1) as a limit (with σ = 1), unlike (1.1) it
exhibits saturation of the nonlinearity. Christodoulides et al (1996) show that, when α = 1,
this system has both bright–bright and bright–dark solitary waves having x−2V z as similarity
variable and that each is stable for some ranges of parameters β1 and β2.

The system (3.1) omits effects due to the transverse diffusion of space charge. A model
equation including such effects is

iuz + uxx − β
u

1 + |u|2 + γ

(|u|2x
)
u

1 + |u|2 = 0. (3.2)

Carvalho et al (1995) showed, by direct integration with initial data u(0, x) = y(x) where
y(x)eiµz satisfies the diffusionless limit (γ = 0) of (3.2), that a localized beam propagates
confined to the immediate vicinity of a parabolic path x ∝ z2. However, there is no mention
in the cited references that (3.2), like its generalization

iαuz + uxx − β1 − (
γ1|u|2 + δ1|v|2

)
x

1 + |u|2 + |v|2 u = 0
(3.3)

ivz + vxx − β2 − (
δ2|u|2 + γ2|v|2

)
x

1 + |u|2 + |v|2 v = 0

to include two polarizations as in (3.1), possesses exact ‘accelerating’ similarity solutions
describing self-similar photorefractive beams which follow parabolic paths.

Using the same composite similarity variable η as for the systems (2.1) and (2.9)–(2.11)
shows that a possible form of solutions to the system (3.3) is

u = eiθ(z,η)F (η) v = eiφ(z,η)G(η) η ≡ x − 2V z − κz2.

Expressions for uz, uxx, vz and vxx are similar to those arising in (2.3). Inserting these together
with (|u|2)x = 2FF ′(η) and (|v|2)x = 2GG′(η) into (3.3) and investigating the imaginary
part, yields expressions similar in form to (2.4) and (2.5); namely

θ(z, η) = α{((z, η) + �1z} +
∫

C1F
−2 dη

φ(z, η) = ((z, η) + �2z +
∫

C2G
−2 dη (3.4)

((z, η) ≡ (V + κz)η + 1
3κ

2z3 + κV z2.

The corresponding ODEs describing the structure of the beam envelopes are

F ′′(η) + α2
(
V 2 − κη − �1

)
F − C2

1F
−3(η) − β1 − 2γ1FF ′ − 2δ1GG′

1 + F 2 + G2
F = 0

(3.5)

G′′(η) +
(
V 2 − κη − �2

)
G − C2

2G
−3(η) − β2 − 2δ2FF ′ − 2γ2GG′

1 + F 2 + G2
G = 0.

It is to be expected that (3.5) possesses isolated beam solutions only for certain
combinations of the parameters κ, V 2 − �i, α, βi , γi and δi (i = 1, 2). Like (2.6), it becomes
autonomous for κ = 0 (cf travelling wave pulses). For κ �= 0, there is no loss of generality in
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setting V = 0, since change in V merely shifts the origin of z in the definition of η and only
V 2 − �1, V

2 − �2 enter (3.5).
For isolated beams (or pulses) satisfying (3.3), the parameters C1 and C2 must be zero, so

that the integrals in (3.4) are replaced by constants. In this case, the parameters κ and �2 − �1

are determined as part of a nonlinear eigenvalue problem, within which a solution having
algebraic Airy function asymptotics (as κη → −∞) is connected to exponentially decaying
behaviour as κη → ∞.

4. The localized beam

This paper confines attention to the simpler eigenvalue problem arising from solutions of the
form u = eiθ(z,η)F (η), η = x − 2V z − κz2 to the single complex equation (3.2). This gives

θ(z, η) = (V + κz)η + 1
3κ

2z3 + κV z2 + �z

as in (3.4), and determines the profile of a localized beam as a solution to the ODE

F ′′(η) + (V 2 − � − κη)F − (β − 2γFF ′)F
1 + F 2

= 0 (4.1)

for which F → 0 as η → ±∞. For specified β and γ , this ‘connection problem’ is found to
relate the beam ‘curvature’ parameter κ to the power within the beam.

In analysing (4.1), a rescaling

η = β−1/2ζ γ = 1
2β

1/2δ a ≡ −β−3/2κ V 2 − � − κη ≡ βM(ζ )

so that M(ζ) = a[ζ + (V 2 − �)/(aβ)] helps. This replaces equation (4.1) by

F ′′(ζ ) + (M(ζ ) − 1)F = −F 2(F + δF ′)
1 + F 2

(4.2)

where the right-hand side is O(|F |3) and a = M ′(ζ ) is a scaled beam curvature. In the special
case a = 0, δ = 0 (i.e. κ = 0 and γ = 0), equation (4.2) is autonomous and conservative, with
first integral

[F ′(ζ )]2 + MF 2 − ln(1 + F 2) = c0 where M = constant.

The special case c0 = 0 corresponds to isolated beams (in which F → 0, F ′ → 0
simultaneously). In the F,F ′ phase plane, it describes homoclinic orbits with µ ≡ max |F |
related to M through

M = µ−2 ln(1 + µ2) ≡ M̃(µ). (4.3)

This shows that these self-similar photorefractive beams can exist only for 0 < M < 1. For
each µ > 0, there exist corresponding beam profiles which are symmetric about an arbitrary
location ζ = ζ ∗. They may be written as F(ζ ) = G(ζ − ζ ∗;µ), where the even function G(ξ ;
µ) is defined through

[Gξ(ξ;µ)]2 = ln(1 + G2) − M̃(µ)G2 G(0;µ) = µ Gξ(0;µ) = 0 (4.4)

so that

Gξξ (ξ;µ) + M̃(µ)G = G

1 + G2
ξ = ζ − ζ ∗. (4.5)

In this (non-diffusive) limit, beams travel along straight paths (κ = 0), while � = V 2−βM̃(µ).
In the diffusive case (γ > 0), beams must be curved. This follows from the identity

d

dζ
{[F ′(ζ )]2 + M(ζ)F 2 − ln(1 + F 2)} = −2δ

F 2(F ′)2

1 + F 2
+ aF 2



1290 D F Parker et al

which follows from (4.2) since M′(ζ ) = a. Because the term in braces vanishes as both
ζ → −∞ and ζ → ∞, integration over (−∞,∞) yields

a

∫ ∞

−∞
F 2(ζ ) dζ − 2δ

∫ ∞

−∞

F 2[F ′(ζ )]2

1 + F 2
dζ = 0. (4.6)

Since both integrals are non-negative and since δ > 0, it follows that profiles of isolated beams
can exist only if a > 0. The corresponding self-similar beam will travel along a parabolic
path, with ‘curvature’ κ = −β3/2a.

In beam profiles satisfying (4.2), the peak amplitude µ and the beam centre ζ = ζ ∗ at
which F ′(ζ ∗) = 0 and F(ζ ∗) = µ are both related to a and δ through (4.6) and through

µ2{M(ζ ∗) − M̃(µ)} = a

∫ ζ ∗

−∞
F 2(ζ ) dζ − 2δ

∫ ζ ∗

−∞

F 2[F ′(ζ )]2

1 + F 2
dζ (4.7)

which is obtained by integration over (−∞, ζ ∗). In direct numerical search for profiles, a
further shift of origin, using F(ζ ) = P(ψ) with ψ = ζ + (V 2 − �)/(aβ), gives M(ζ) = aψ

and removes the parameters V 2 − � and β from (4.2). The defining system becomes

d2P

dψ2
+ (aψ − 1)P +

P 2(P + δP ′)
1 + P 2

= 0 with µ = P(ψ∗) P ′(ψ∗) = 0 (4.8)

a

∫ ∞

−∞
P 2 dψ − 2δ

∫ ∞

−∞

P 2(P ′(ψ))2

1 + P 2
dψ = 0 (4.9)

ψ∗ ≡ ζ ∗ + (V 2 − �)/(aβ) = M̃(µ)

a
+

1

µ2

∫ ψ∗

−∞
P 2 dψ − 2δ

aµ2

∫ ψ∗

−∞

P 2(P ′(ψ))2

1 + P 2
dψ. (4.10)

Although, for chosen a and δ, the location of the beam profile along the ψ-axis is a
priori unknown, it may be estimated for small δ using a perturbation method (see section 5).
This then allows estimation of the location of the beam fringes |ψ − ψ∗| = O(ln ε−1),
where F(ζ ) = P(ψ) = O(ε) with ε � 1. In these regions, analysis of the linearization of
equation (4.8) shows that in the fringe where ψ > ψ∗, a decaying solution with |P | → 0 (in
the ‘stable manifold’) must have P ≈ −(1 − aψ)−1/2P ′, while in the fringe lying in ψ < ψ∗

the corresponding (‘unstable manifold’) approximation is P ≈ (1 − aψ)−1/2P ′, provided that
aψ � 1.

This motivates the numerical solution procedure for the system (4.8)–(4.10). For chosen
δ and a, a value ψ̄ � a−1 is selected at which initial conditions

P(ψ̄) = ε P ′(ψ̄) = −(1 − aψ̄)1/2ε

are applied (with e.g. ε = 10−3). Equation (4.8) is then integrated for ψ decreasing (i.e.
ψ � ψ̄) until P 2 + (P ′)2 first attains a minimum. Then ψ̄ is adjusted so as to successively
reduce this minimum value (a ‘shooting method’) to O(10−6) or smaller. For the resulting
profiles, conditions (4.9) and (4.10) are used as checks. The location ζ = ζ ∗ of the beam
centre is then calculated as ζ ∗ = ψ∗ − (V 2 − �)/(aβ).

5. The perturbation method

Approximate solutions to (4.2) may be obtained based on the observation that, as δ → 0,

F(ζ ) → G(ξ;µ) with ξ ≡ ζ − ζ ∗.

When M(ζ ) is expressed as M(ζ) = aξ + α (with α = aζ ∗ + β−1(V 2 − �) = M(ζ ∗)),
equation (4.2) may be rewritten as

d2F

dξ2
+ (aξ + α − 1)F = −F 3

1 + F 2
− δ

F 2F ′

1 + F 2
.
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Solutions are again sought with pulse centre at ξ = 0, so that
dF

dξ
= 0 at ξ = 0 F → 0 as ξ → ±∞.

As δ → 0, it is found that F → G(ξ;µ), a → 0 and α → M̃(µ), as defined in (4.3). It is
possible to expand in powers of δ, with free parameter µ chosen so that F(ξ∗) = µ, as

F(ζ ) = G(ξ;µ) + δF1(ξ;µ) + δ2F2(ξ;µ) + · · ·
a = δa1 + δ2a2 + · · ·
α = M̃(µ) + δα1 + δ2α2 + · · · .

(5.1)

At O(δ) this yields

F ′′
1 (ξ;µ) + M̃(µ)F1 +

G2 − 1

(1 + G2)2
F1 = −(α1 + a1ξ)G − G2G′

1 + G2
(5.2)

where primes denote differentiation with respect to ξ and the conditions on F(ζ ) require that

F1(0;µ) = 0 F ′
1(0;µ) = 0 F1(ξ;µ) → 0 as ξ → ±∞.

It may be observed, by differentiating the identity (4.5) partially with respect to ξ and µ

in turn, that

d2

dξ2
G′ + M̃(µ)G′ +

G2 − 1

(1 + G2)2
G′ = 0

and
d2

dξ2
Gµ + M̃(µ)Gµ +

G2 − 1

(1 + G2)2
Gµ = −M̃ ′(µ)G(ξ;µ).

Hence the function F1(ξ ; µ) may be expressed as

F1 = α1(M̃
′(µ))−1Gµ(ξ;µ) + H1(ξ;µ) (5.3)

where G′ ≡ ∂G/∂ξ,Gµ ≡ ∂G/∂µ and H1(ξ ; µ) is an odd function of ξ satisfying

d2H1

dξ2
+ M̃(µ)H1 +

G2 − 1

(1 + G2)2
H1 = −a1ξG(ξ;µ) − G2

1 + G2
G′(ξ;µ)

(5.4)
H1(0;µ) = 0 H ′

1(0;µ) = 0 with H1(ξ;µ) → 0 as ξ → ±∞.

However, in (5.3) it is found that α1 = 0, from both the O(δ) approximation to equation (4.7)
and the condition F1(0) = 0 (since Gµ(0;µ) �= 0). Then, after rewriting (5.4) as

d

dξ
{G′H ′

1 − H1G
′′} = −a1

d

dξ

(
1

2
ξG2

)
+

1

2
a1G

2 − G2(G′)2

1 + G2

it is found that as ξ → ±∞ the decay conditions yield

a1

∫ ∞

0
G2(ξ;µ) dξ = 2

∫ ∞

0

G2(ξ;µ)(G′(ξ;µ))2

1 + G2(ξ;µ)
dξ (5.5)

(or an equivalent condition involving integrals from −∞ to 0). Formula (5.5) for a1 may
alternatively be deduced by inserting the expansions (5.1) into the condition (4.7).

Using these results allows solutions to (4.2) to be written as

F(ζ ) = G(ξ;µ) + δH1(ξ;µ) + O(δ2) a = δa1 + O(δ2) α = M̃(µ) + O(δ2) (5.6)

where G(ξ ; µ) is defined by (4.4) and a1(µ) follows from (5.5). The odd function H1(ξ ; µ)
defined by (5.4) then decays as ξ → ∞. For the corresponding beam of peak intensity
Fmax = |u|max = µ, the centre travels along the parabola

x − 2V z + 2γβa1(µ)z2 ≈ β−1/2ζ ∗ ≈ M̃(µ)

2γ a1(µ)
+

� − V 2

2βγ a1(µ)
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Figure 1. The variation in path curvature a with beam power for different values of δ; solid curves
represent the numerical procedure, dashed curves represent the perturbation method.

and the phase is

θ = �z + (V + κz)(x − 2V z) − 2
3κ

2z3.

In these expressions µ, � and V are adjustable, while δ is δ ≡ 2γβ−1/2. The special choice
V = 0, � = −βM̃(µ) leads to pulses with centre on the path x = κz2 ≈ −2γβa1(µ)z2 and
with phase θ = (� + κx)z − 2

3κ
2z3.

6. Results and conclusions

In section 5, for specified δ and µ the predictions of α ≈ M̃(µ) and the path curvature
a ≈ a1δ lead to ψ∗ ≈ M̃(µ)/(a1δ). Then, with ξ = ζ − ζ ∗ the representation
F(ζ ) ≈ G(ξ;µ) + δF1(ξ;µ) agrees well, for δ = 0.01, 0.1, with the numerically determined
solution F(ζ ) = P(ξ + α/a) in section 4, where δ and a are the parameters specified. For
δ = 0.2, 0.3, the agreement is not so good (see figure 1), but the perturbation method still gives
estimates of a as a function of δ and µ which are useful for the direct numerical integration.

In practice, dependence on beam power

β1/2P ≡ β1/2
∫ ∞

−∞
F 2 dη =

∫ ∞

−∞
F 2 dζ

is more useful than dependence on µ. Figure 1 shows that, for small δ, the scaled curvature a
first increases with beam power, then decreases. Hence, for some values of a, two solutions
for µ and ψ∗ are to be expected from numerical search. This is confirmed in figures 2–4,
where the solid curves correspond to higher beam powers, with larger values of µ and smaller
values of ψ∗, while the dashed curves correspond to lower beam powers (with smaller µ and
larger ψ∗). These figures also show that the dotted curves describing the perturbation theory
approximation to the relation between the peak amplitude µ and the peak location ψ = ψ∗,
and given by ψ = M̃(µ)/(a1(µ)δ), are remarkably accurate. For larger diffusivity δ = 0.3,
it was possible to find beam profiles only for the lower beam powers (see figure 5), though
the prediction ψ∗ ≈ M̃(µ)/(a1(µ)δ) for the pulse centre remains good at these powers. In
all cases, while the beam profile is necessarily asymmetric, the departure from symmetry
is always found to be small. It is also confirmed that the beam power β1/2P(µ) increases
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Figure 2. The beam profile P (ψ) for δ = 0.01 and for the various curvatures a = 0.0003, 0.0004,
0.0005, 0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.00105, 0.0011, 0.00112, 0.00113, 0.00114
corresponding to higher beam powers (solid curves from left to right) and for a = 0.00114,
0.001135, 0.00113, 0.00112, 0.0011, 0.00108, 0.00105, 0.00101, 0.001 corresponding to lower
beam powers (dashed curves from left to right). The dotted curve represents the perturbation
approximation ψ∗ = M̃(µ)/(a1(µ)δ) relating the maximum µ to the beam centre location ψ∗.
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Figure 3. The beam profile P (ψ) for δ = 0.1 and for the various curvatures a = 0.007, 0.01, 0.011,
0.01136 corresponding to higher beam powers (solid curves from left to right) and for a = 0.011,
0.01, 0.009, 0.008, 0.007 corresponding to lower beam powers (dashed curves from left to right).
The perturbation approximation ψ∗ = M̃(µ)/(a1(µ)δ) is again shown as a dotted curve.

monotonically with µ, while ψ∗ decreases monotonically. Moreover, at fixed µ, β1/2P(µ)

increases only by less than 2% as δ increases from 0.01 to 0.3.
Direct numerical solution of equation (3.2) (Carvalho et al 1995) predicted parabolically

curved beams. Hence, stability, at least for some µ and δ, is to be inferred. A fuller analysis of
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Figure 4. The beam profile P (ψ) for δ = 0.2 and for the curvature a = 0.0215 corresponding to
a higher beam power (solid curve) and for a = 0.02246, 0.0215, 0.02, 0.018, 0.015, 0.013, 0.011,
0.01, 0.009, 0.008 corresponding to lower beam powers (dashed curves from left to right). The
dotted curve represents ψ∗ = M̃(µ)/(a1(µ)δ).
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Figure 5. The beam profile P (ψ) for δ = 0.3 and for the various curvatures a = 0.012 to
0.033 in steps of 0.001 corresponding to lower beam powers (from right to left). The curve
ψ∗ = M̃(µ)/(a1(µ)δ) is again shown as dotted.

the stability is currently underway. While, for all µ, the beam asymmetry is found to be small,
the deviation from the familiar sech2 profile may be substantial, and is due to the saturable
nature of the nonlinearity. In experimental situations, a self-similar beam having permanent
envelope profile will arise when initial profiles (and phases) are chosen closely consistent with
(4.2).
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Appendix. The role of the F−3 terms

Terms similar to F−3(η) occur widely in the ODEs for the structure of modulated pulses (see
(1.5), (2.6), (3.4) and also Parker (1988) and Manganaro and Parker (1993)). Their role is
clarified as an ‘angular momentum’ effect, by use of the Clarkson–Kruskal (1989) technique.
Applying this to the system (3.2) yields

u(z, x) = eiα(((z,η)+�1z)f (η) v(z, x) = ei(((z,η)+�2z)g(η)

with η = x − 2V z− κz2, with ((z, η) determined as in (3.3) and with the complex envelopes
f (η), g(η) governed by

f ′′(η) + α2
(
V 2 − κη − �1

)
f − β1 − γ1(f

∗f ′ + ff ∗′) − δ1(g
∗g′ + gg∗′)

1 + ff ∗ + gg∗ f = 0
(A.1)

g′′(η) +
(
V 2 − κη − �2

)
g − β2 − δ2(f

∗f ′ + ff ∗′) − γ2(g
∗g′ + gg∗′)

1 + ff ∗ + gg∗ g = 0.

These are equivalent to (3.4) under the substitutions

f (η) = F(η)eiθ̃ (η) g(η) = G(η)eiφ̃(η) θ̃ ′(η) = C1F
−2 φ̃′(η) = C2G

−2. (A.2)

Moreover, the system (A.1) yields
d

dη
(f ∗f ′ − ff ∗′) = 0 = 2i

d

dη
(F 2θ̃ ′)

d

dη
(g∗g′ − gg∗′) = 0 = 2i

d

dη
(G2φ̃′)

hence showing that the quantitiesF 2θ̃ ′ and G2φ̃′ appear as angular momenta and are conserved
as a consequence of (A.1). It is insertion of expressions (A.2) into the terms (θ̃ ′)2F and (φ̃′)2G

which yields the F−3(η) and G−3(η) terms in (3.4). Similarly, the F−3 and G−3 terms in (1.5)
and (1.7) arise directly from the amplitude-dependent contributions to the phases θ and φ

in (1.4) and (1.6), respectively. For isolated pulses (or spatial beams) these two terms must
vanish.

References

Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations (New York: Springer)
Carvalho M I, Singh S R and Christodoulides D N 1995 Opt. Commun. 120 311–5
Christodoulides D N, Singh S R, Carvalho M I and Segev M 1996 Appl. Phys. Lett. 68 1763–5
Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201–13
Kodama Y and Wabnitz S 1994 Opt. Lett. 19 162–4
Manganaro N and Parker D F 1993 J. Phys. A: Math. Gen. 26 4093–106
Mollenauer L F, Gordon J P and Evangelides S G 1992 Opt. Lett. 17 1575–7
Parker D F 1988 Proc. 4th Meeting on Waves and Stability in Continuous Media ed A Donato and S Giambo (Cosenza:

Editel) pp 261–80
Parker D F and Radha Ch 2002 submitted
Porubov A V and Parker D F 1999 Wave Motion 29 97–109
Singh S R, Carvalho M I and Christodoulides D N 1995 Opt. Lett. 21 2177–9
Vanin E V, Korytin A I, Sergeev A M, Anderson D, Lisak M and Vázquez L 1994 Phys. Rev. A 49 2806–11


